中国一级毛片在线观看_成人a毛片免费全部播放_美女全程穿着高跟鞋做爰_日韩欧美一中文字慕2o22

手持激光焊接機(jī)

當(dāng)前位置:前位置:首頁 > 手持激光焊接機(jī)
全部 411

藥房智能藥品分揀機(jī)器人,讓機(jī)器人通過一段只有一個(gè)人的視頻來模仿學(xué)習(xí)

時(shí)間:2022-07-20   訪問量:0
機(jī)器視覺物流分揀機(jī)器人

人類和動(dòng)物在學(xué)習(xí)新行為時(shí),大部分只需要觀察一次就能學(xué)會(huì),然而想讓機(jī)器人學(xué)習(xí)就沒那么容易了。隨著計(jì)算機(jī)視覺的發(fā)展,目前的技術(shù)能讓機(jī)器人依靠人體姿勢(shì)檢測(cè)系統(tǒng),模仿人類的動(dòng)作進(jìn)行學(xué)習(xí)。不過每次都需要人類“做示范”未免有些麻煩,本篇論文的研究人員們想出了新方法:讓機(jī)器人通過一段只有一個(gè)人的視頻來模仿學(xué)習(xí)。

此前的研究表明,機(jī)器人能通過觀察示范學(xué)習(xí)一系列復(fù)雜的技能,例如倒水、打乒乓球、打開抽屜等。然而,機(jī)器人模仿最有效的方法與人類學(xué)習(xí)有很大的不同:機(jī)器人通常需要接到具體的動(dòng)作示范或遙控操作,人類只需看別人做一遍就能了解。另外,人類還能根據(jù)環(huán)境變化改變策略,適應(yīng)新情況。所以,我們?cè)鯓幽茏寵C(jī)器人像人類一樣,通過觀察第三方示范進(jìn)行學(xué)習(xí)?

從原始視頻中獲得技能存在兩大挑戰(zhàn)。首先,人類演示者和機(jī)器人的外觀及形態(tài)的差異會(huì)帶來系統(tǒng)性的域轉(zhuǎn)移,即對(duì)應(yīng)問題(correspondenceproblem)。其次,從原始視覺輸入中學(xué)習(xí)通常需要大量數(shù)據(jù),深度學(xué)習(xí)視覺系統(tǒng)一般要使用數(shù)十萬至數(shù)百萬的圖像。而在本文中,我們展示了通過基于元學(xué)習(xí)的單一方法解決這兩個(gè)挑戰(zhàn)。

自動(dòng)播種分揀機(jī)器人多少錢神木abb分揀機(jī)器人

前期準(zhǔn)備

該方法建立在之前的工作成果或者元學(xué)習(xí)的基礎(chǔ)上,我們將對(duì)模型元學(xué)習(xí)算法進(jìn)行擴(kuò)展,它能夠處理提供的數(shù)據(jù)和評(píng)估設(shè)置之間的域轉(zhuǎn)移。

元學(xué)習(xí)算法能快速有效地學(xué)習(xí)新任務(wù),一般來說,元學(xué)習(xí)可以看作是發(fā)現(xiàn)任務(wù)之間存在的結(jié)構(gòu)的功能。當(dāng)模型從元測(cè)試集中提出新任務(wù)時(shí),模型可以使用已知結(jié)構(gòu)快速學(xué)習(xí)。算法通過對(duì)深度網(wǎng)絡(luò)的初始參數(shù)設(shè)置進(jìn)行優(yōu)化來實(shí)現(xiàn)這一點(diǎn)。在元訓(xùn)練之后,根據(jù)新任務(wù)的數(shù)據(jù)對(duì)學(xué)習(xí)參數(shù)進(jìn)行微調(diào)。

模仿人類

在這一部分,我們將說明機(jī)器人一次性模仿人類學(xué)習(xí)的問題,并介紹我們的試驗(yàn)方法。從含有人類的視頻中進(jìn)行學(xué)習(xí)可以看做是一個(gè)推理問題,其目標(biāo)是推斷機(jī)器人的策略參數(shù),它能將先驗(yàn)知識(shí)與少量證據(jù)結(jié)合來完成任務(wù)。為了從只有一個(gè)人的視頻中有效學(xué)習(xí),我們需要包含著對(duì)世界有著豐富視覺和物體理解的先驗(yàn)知識(shí)。

而試驗(yàn)方法包括兩個(gè)階段,在元訓(xùn)練階段,我們需要利用人類和機(jī)器人的動(dòng)作數(shù)據(jù)獲取先驗(yàn)知識(shí),然后通過快速學(xué)習(xí)模仿動(dòng)作。這一方法的關(guān)鍵部分在于,它可以遷移到其他元學(xué)習(xí)算法中去。如MAML算法一樣,我們將學(xué)習(xí)一系列初始參數(shù),在經(jīng)歷過幾次梯度下降后,模型還能有效地完成新任務(wù)。最終用于元目標(biāo)的算法可以總結(jié)為:

分揀機(jī)器人撿垃圾

在元訓(xùn)練階段之后,學(xué)習(xí)到的先驗(yàn)知識(shí)將用于第二階段。當(dāng)機(jī)器人模仿人類的新動(dòng)作時(shí),必須將先驗(yàn)知識(shí)與新的人類示范動(dòng)作結(jié)合,來推斷解決新任務(wù)的策略參數(shù)。算法總結(jié)為:

時(shí)序適應(yīng)目標(biāo)學(xué)習(xí)

為了從人的視頻中學(xué)習(xí),我們需要一個(gè)適應(yīng)目標(biāo),可以有效地捕捉視頻中的相關(guān)信息,比如人的意圖和與任務(wù)有關(guān)的對(duì)象。由于時(shí)序卷積在處理時(shí)序和數(shù)據(jù)序列時(shí)是有用的,所以我們選擇用一個(gè)卷積網(wǎng)絡(luò)表示適應(yīng)目標(biāo)。效果如圖所示:

中轉(zhuǎn)站快遞分揀機(jī)器人多少錢

網(wǎng)絡(luò)架構(gòu)

分揀機(jī)器人視覺

如圖所示,網(wǎng)絡(luò)架構(gòu)是一個(gè)卷積神經(jīng)網(wǎng)絡(luò),將RGB圖像映射到動(dòng)作分布。卷積網(wǎng)絡(luò)從幾個(gè)卷積層開始,然后被輸送到通道空間的argmax中,為每個(gè)通道提取二維特征點(diǎn)f。接著我們將這些特征點(diǎn)與機(jī)器人結(jié)構(gòu)連接在一起,該結(jié)構(gòu)包括夾具上的3個(gè)非軸對(duì)齊的點(diǎn)。然后,我們將連接的特征點(diǎn)和機(jī)器人姿態(tài)傳遞給多個(gè)完全連接層。

實(shí)驗(yàn)過程

我們的實(shí)驗(yàn)主要想解決三個(gè)問題:

我們的方法能否有效地學(xué)習(xí)先驗(yàn)知識(shí),讓機(jī)器人能夠通過僅有一人的視頻學(xué)習(xí)操作新物體?

我們的方法能否從新的角度讓機(jī)器人模仿人類動(dòng)作?

我們所提出的方法與元學(xué)習(xí)方法以及其他方法有何不同?

為了進(jìn)一步了解我們的方法以及其實(shí)用性,我們還要另外評(píng)估:

時(shí)序適應(yīng)目標(biāo)有多重要?

我們的方法能否用于多個(gè)機(jī)器人平臺(tái),以及用于動(dòng)作或遙控示范的元訓(xùn)練?

為了進(jìn)行評(píng)估,我們?cè)?軸的PR2機(jī)械臂和Sawyer機(jī)器人上進(jìn)行實(shí)驗(yàn)。

PR2實(shí)驗(yàn)過程

首先是用機(jī)械臂PR2進(jìn)行物體的放置、前推、撿拾等動(dòng)作的測(cè)試,具體過程如圖:

從左至右分別是:物體放置、推動(dòng)以及撿拾-放下動(dòng)作。上面一排是人類示范

整個(gè)過程的裝置情況是這樣的:

最后,PR2一次學(xué)習(xí)的評(píng)估情況展示在下表中,可以看到成功率大大高于之前的方法:

分揀機(jī)器人研究現(xiàn)狀

另外,研究人員還統(tǒng)計(jì)了PR2在做“推動(dòng)”時(shí)發(fā)生的錯(cuò)誤:

Sawyer實(shí)驗(yàn)過程

實(shí)驗(yàn)的另一個(gè)目標(biāo)是我們的方法能否應(yīng)用于別的平臺(tái)上,于是我們選擇了7個(gè)自由度的Sawyer進(jìn)行驗(yàn)證。不同與PR2實(shí)驗(yàn),動(dòng)作空間將是末端執(zhí)行器的單個(gè)指令姿態(tài),我們將使用均方誤差作為外部的元目標(biāo)。

最終,在使用時(shí)序適應(yīng)目標(biāo)的實(shí)驗(yàn)中,成功率比沒有使用的提高了14%,證明了從視頻中學(xué)習(xí)時(shí)融合時(shí)間信息的重要性。

實(shí)驗(yàn)的局限性

雖然我們的工作成果能讓機(jī)器人從視頻中一次性學(xué)習(xí)操作新的物體,但是目前的實(shí)驗(yàn)還沒有證明模型能夠一次性學(xué)習(xí)全新動(dòng)作。希望未來有更多的數(shù)據(jù)和更高性能的模型能實(shí)現(xiàn)這一目標(biāo)。

快遞分揀機(jī)器人是哪個(gè)企業(yè)的分揀機(jī)器人發(fā)展趨勢(shì)

上一篇:物流分揀機(jī)器人競(jìng)品,快商通智能機(jī)器人助力老年人融入智能化生活

下一篇:閃兔分揀機(jī)應(yīng)用,2020年我國工業(yè)機(jī)器人完成產(chǎn)量237068臺(tái)

返回頂部